
Available online at www.sciencedirect.com
Journal of Computational Physics 227 (2008) 4512–4517

www.elsevier.com/locate/jcp
Efficient implementation of the Lanczos method
for magnetic systems

Jürgen Schnack a,*, Peter Hage b, Heinz-Jürgen Schmidt b

a Universität Bielefeld, Fakultät für Physik, Postfach 100131, D-33501 Bielefeld, Germany
b Universität Osnabrück, Fachbereich Physik, D-49069 Osnabrück, Germany

Received 22 June 2007; received in revised form 11 December 2007; accepted 10 January 2008
Available online 1 February 2008
Abstract

Numerically exact investigations of interacting spin systems provide a major tool for an understanding of their magnetic
properties. For medium size systems the approximate Lanczos diagonalization is the most common method. In this article
we suggest two improvements: efficient basis coding in subspaces and simple restructuring for openMP parallelization.
� 2008 Elsevier Inc. All rights reserved.

PACS: 75.10.Jm; 75.40.Mg

Keywords: Spin systems; Lanczos diagonalization; Basis coding; Parallelization
1. Introduction

Many magnetic materials can accurately be described by the Heisenberg or related effective spin models.
Due to the vastly increasing size of the underlying Hilbert space, which grows as (2s + 1)N for N spins of spin
quantum number s, only small spin systems can be modeled exactly, i.e., their complete eigenspectrum can be
determined. For larger systems approximate methods such as the Lanczos [1] or related methods like the
Arnoldi, the projection, or the Density Matrix Renormalization Group (DMRG) method [2–4] are used. They
usually aim at properties of ground states in orthogonal subspaces, which are provided by symmetry, see e.g.
[5–7]. But also thermal properties can be addressed by means of a finite-temperature Lanczos method [8] as
done for instance for the evaluation of certain Kondo lattice models in Ref. [9].

For all these methods it is of course advantageous to use the present symmetries in order to reduce the size
of the Hamiltonian matrix as much as possible by decomposing the Hilbert space into mutually orthogonal
subspaces. One obvious symmetry is the rotational invariance of many models with respect to rotations about
the z-axis in spin space. This leads to a decomposition of the total Hilbert space H into orthogonal subspaces
HðMÞ characterized by their total magnetic quantum number M. The related basis, which is a subset of the full
0021-9991/$ - see front matter � 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2008.01.027

* Corresponding author. Tel.: +49 521 106 6193; fax: +49 521 106 6455.
E-mail address: jschnack@uni-bielefeld.de (J. Schnack).

mailto:jschnack@uni-bielefeld.de


J. Schnack et al. / Journal of Computational Physics 227 (2008) 4512–4517 4513
basis, should then efficiently be encoded. In many applications nowadays these basis states are either stored in
tables and assessed via hash search methods, see e.g. [10], or encoded using the two-dimensional representa-
tion by Lin [11], which needs two vectors of size �(2s + 1)(N/2) for encoding. In this article we will provide
direct algorithms for encoding and decoding of basis states in subspaces HðMÞ.

Thanks to available SMP (symmetric multiprocessing) computers with large shared memory Lanczos vec-
tors of considerable size can be processed. An example is given in Ref. [7] where Lanczos vectors with about
109 entries were used. We show that by a simple reformulation of the typical implementation of the Lanczos
algorithm a very sufficient parallelization with openMP can be achieved that avoids write conflicts.

The article is organized as follows. The next section shortly introduces the Heisenberg model as an arche-
typical example. In Section 3 we introduce the new basis encoding in subspaces HðMÞ. The last Section 4 deals
with parallelization issues.

2. Heisenberg Hamiltonian and basis encoding

Spin systems are very often modeled by effective spin Hamiltonian such as the isotropic Heisenberg
Hamiltonian
H
�
¼ �

X

u;v

J uv~s�
ðuÞ �~s

�
ðvÞ: ð1Þ
~s
�
ðuÞ are the individual spin operators at sites u. Juv are the matrix elements of the symmetric coupling matrix.

In the following we will assume that all spin quantum numbers are equal, i.e., s1 = s2 = � � � = sN = s.
The starting point for any diagonalization is the product basis of the single-particle eigenstates of all s

�zðuÞ

s
�zðuÞjm1; . . . ;mu; . . . ;mNi ¼ mujm1; . . . ;mu; . . . ;mN i: ð2Þ
These states are sometimes called Ising states. They span the full Hilbert space and are used to construct sym-
metry-related basis states. For encoding purposes, and since mu can be half-integer, they are usually rewritten
in terms of quantum numbers au = s � mu instead of mu, where au = 0,1, . . . , 2s. The number of basis states,
i.e., the dimension of the full Hilbert space, is dimðHÞ ¼ ð2sþ 1ÞN . The complete basis set ja1, . . . ,au, . . . ,aNi
provides itself a natural encoding given by the number system with basis (2s + 1). To give an example, the
basis of a system of 8 spins s = 1 can be completely and easily encoded using all 8-digit numbers where each
digit can assume the values 0, 1, 2:
j0; 0; 0; 0; 0; 0; 0; 0i
j1; 0; 0; 0; 0; 0; 0; 0i
j2; 0; 0; 0; 0; 0; 0; 0i
0; 1; 0; 0; 0; 0; 0; 0i

. . .

j2; 2; 2; 2; 2; 2; 2; 2i:

ð3Þ
3. Basis encoding in HðMÞ

The basis in the subspace HðMÞ is given by all product states ja1, . . . ,aNi with M ¼ Ns�
P

uau. For usage in
a computer program they need to be assigned to integer numbers 1; . . . ; dimðHðMÞÞ. The reason is that one
usually does not need the basis only once at initialization, but at every Lanczos iteration, since the sparse
Hamiltonian matrix is not stored, but its non-zero matrix elements are evaluated whenever needed using
hijH
�
jji � hai

1; . . . ; ai
N jH� ja

j
1; . . . ; aj

N i: ð4Þ
For a direct coding algorithm of basis states in subspaces HðMÞ it is advantageous that the sizes of the sub-
spaces HðMÞ are known analytically [12]. Thus an array can be built at startup that contains for a fixed s the
sizes of these subspaces HðM ¼ Ns� AÞ for given N and A. We will call this array D(N,A). It will be used to



4514 J. Schnack et al. / Journal of Computational Physics 227 (2008) 4512–4517
determine the sequential number of a basis vector in HðMÞ. The recursive buildup is performed using the fol-
lowing relation between the sizes of subspaces
1 Th
that fie
DðN ;AÞ ¼
X2s

k¼0

DðN � 1;A� kÞ; ð5Þ
with D(N = 1, A = 0,1, . . . , 2s) = 1, D(N, A = 0) = 1, and D(N, A = 1) = N. If A 62 {0,1, . . . , 2N s} then D(N,
A) = 0.

3.1. i) jai
1; . . . ; ai

N i

One coding direction, i) jai
1; . . . ; ai

N i, which is the more trivial direction, can be realized in several ways. If
the basis is not too big one simply generates all basis states of the subspace HðMÞ in lexicographical order,
compare (3), and stores the quantum numbers ai

k of the ith vector in an array. The generation can either
be performed by running through all basis states (3) and sorting out those which comply with the condition
M ¼ Ns�

P
uau or by algorithms that generate only those basis states that obey the condition already.

A direct algorithm i) jai
1; . . . ; ai

N i using the known dimensions of the subspaces HðM ¼ Ns� AÞ could be
realized as follows:1
BasisVector contains the N entries ak. This algorithm will be made clearer when we explain the inverse
algorithm in Section 3.2.

Nevertheless, since a Lanczos routine would run through a state vector along the lexicographical order of
basis states one would actually only need a function that generates for a given basis state the succeeding basis
state. To understand how this works it is helpful to picture the basis states jai

1; . . . ; ai
N i as distributions of

exactly A ¼
P

uau balls in N boxes, where each box can contain at most 2s balls. Thus the lexicographically
lowest state is given by the distribution where the boxes are filled sequentially starting with the leftmost
box, i.e., entry number 1.

How does one advance from one basis state to the succeeding one?

(1) Find the leftmost position k for which the entry is nonzero and the next entry is less than 2s. If such a
position does not exist, then there is no succeeding basis state.
e given code uses FORTRAN notation. Nevertheless, it can be easily transformed into C. One should only pay attention to the fact
ld indices in FORTRAN start at 1 not at 0. Therefore, the definition of the second field index of D has been modified accordingly.



J. Schnack et al. / Journal of Computational Physics 227 (2008) 4512–4517 4515
(2) Take one (ball) out of entry (box) k and add it to the next entry to the right, i.e., entry (box) with index
k + 1.

(3) Empty all entries (boxes) 1 to k and fill this content (these balls) into the entries (boxes) starting from the
left in lexicographical order.

Take as an example for N = 8, s = 3/2, and A = 6 the state j0,0,0,2,3,1,0,0i. Entry number k = 5 from the
left is the first position to fulfill the first condition. One out of the 3 is put into k = 6 yielding 2 there. Then the
content of entries k = 1, . . . , 5 is taken and filled into the entries starting from the left. This content is 4 in the
present example. Three out of the four can be filled into entry number 1. The rest fits into entry number 2.
Therefore, the resulting basis state is j3; 1; 0; 0; 0; 2; 0; 0i.

3.2. jai
1; . . . ; ai

Ni ) i

The inverse direction is actually the nontrivial one, since the basis vectors are only a subset of the full basis
set (3). Therefore, for the latter coding direction search algorithms are employed, e.g. [10], or the two-dimen-
sional representation of Lin [11] is used, which needs two vectors of size �(2s + 1)(N/2) to encode all basis
states.

The position of a basis vector ja1; . . . ; aN i in the lexicographically ordered list of vectors will be determined
by evaluating how many vectors lay before this vector. For this purpose the known dimensions of the subspac-
es HðM ¼ Ns� AÞ are used again. We explain this procedure with an instructive example. Assume we inves-
tigate a spin system with N = 4 and s = 3/2 in a subspace of A = 6, i.e., M = 0. Our example basis vector is
j1,0,2,3i. In the list of basis vectors all vectors fulfilling one of the following criteria are listed before the exam-
ple vector, the respective dimensions will be added:

� Vectors with 0, 1, or 2 instead of 3 as the first (rightmost) figure: Their dimensions are D(3,6), D(3,5), and
D(3,4), respectively, since the condition that

P
iai ¼ A must be fulfilled in total.

� Out of all vectors where the first figure is 3, those where the second figure is 0 or 1 are listed before, thus
their respective dimensions of D(2,3) and D(2, 2) must be added.
� This procedure continues until the last figure. In the present example this yields 0 for the third figure and

simply 0 for the last figure.
� Thus the number of the present vector is given by the sum of the mentioned dimensions plus one.

In a computer program one can evaluate the position i of ja1; . . . ; aN i in the list of basis vectors according to
BasisVector contains the N entries ak. If the array of dimension D(N,A) is properly initialized, i.e., the
field value is zero for non-valid combinations of N and A, then the sum can be performed in a computer pro-
gram without paying attention to the restrictions for the indices.

4. Parallel Lanczos implementation on SMP machines

Parallelization of the Lanczos or similar methods aims at a parallelization of the basic matrix-vector oper-
ations. This has been reported as being extremely difficult due to prohibitive communication costs [13,14]. In
this section we show that parallelization is in principle possible if (1) the sparse matrix is not stored but matrix



4516 J. Schnack et al. / Journal of Computational Physics 227 (2008) 4512–4517
elements are evaluated whenever needed and (2) the loops for matrix-vector multiplication are rearranged. The
efficiency of the method will be discussed.

The basic step of a Lanczos or a similar method consists in the (repeated) application of the sparse matrix,
i.e., the Hamiltonian, onto an initial trial vector
hijw2i ¼
XdimðHðMÞÞ

j¼1

hijH
�
jjihjjw1i: ð6Þ
Here hjjw1i are the entries of the initial column vector jw1i; the resulting vector is jw2i.

(1) The Hamiltonian matrix hijH
�
jji is sparse, both on the global level as well as in subspaces HðMÞ since for

many applications the interactions given by Juv in Eq. (1) are restricted to nearest neighbors. In such a
subspace it typically contains an order of N 1...2 � dimðHðMÞÞ non-zero entries, for instance for Heisen-
berg systems. For very large dimensions, e.g. of order 109, this would easily amount to several dozens of
Gigabytes. Therefore, it would be better not to store the matrix, but to evaluate the matrix elements
whenever needed. In addition one saves communication time since the required matrix elements do
not need to be delivered to the respective cores.

(2) A typical implementation would have the loop about j as the outermost loop. An entry hjjw1i of the ini-
tial vector would be read, then the non-zero matrix elements hijH

�
jji would be determined, and the

resulting products would be written into the respective entries hijw2i. When parallelizing the loop about
j this leads to write conflicts since different initial entries may result in the same final one.

It turns out that both problems can be solved together in cases where the application of the Hamiltonian
onto each basis state is known analytically. In these cases only the non-vanishing matrix elements will be gen-
erated by applying the Hamiltonian, e.g. (1), onto the final basis state jii. This yields for a given final index i a
set of initial indices {j(i)} where only these indices contribute in the sum in Eq. (6).
hijw2i ¼
X

fjðiÞg
hijH
�
jjihjjw1i: ð7Þ
Therefore, one would rewrite Eq. (6) as Eq. (7) and in a parallel computer program let i be the outer loop.
Then one determines for every final entry hijw2i those initial entries hjjw1i that contribute with non-zero
hijH
�
jji in the sum (7). It may happen that at runtime different threads read the same entry of the initial vector,

but this is harmless.
Fig. 1 shows as an example the scaling of CPU time for 200 Lanczos iterations with a vector of length

484,500. The program and all subroutines are written in Fortran and compiled with the INTEL Fortran com-
piler using openMP directives. The linear scaling is almost perfect. Slight deviations are due the non-parallel
parts of the program, especially the initialization.

Although this result is encouraging there are potential problems one still has to be aware of. In the tested
SMP machine all eight cores are sitting on one and the same board together with the shared memory. How
Fig. 1. Scaling of CPU time for 200 Lanczos iterations with number of allowed threads. The machine has eight cores.



J. Schnack et al. / Journal of Computational Physics 227 (2008) 4512–4517 4517
good the algorithm scales, if one would use an architecture where cores are distributed over several boards
with a necessarily increased communication between the boards, has to be tested. That communication will
indeed be needed has to do with the fact that a Hamiltonian of type (1) connects very different parts of the
Lanczos vector, in some cases it can even be proven that it connects every part with every other after a certain
number of Lanczos steps. Nevertheless, in some cases it is possible to regroup basis states in order to minimize
communication costs.

Summarizing, in this article we provide a coding algorithm for spin basis states in subspaces HðMÞ and
demonstrate that a rearrangement of loops allows an efficient parallelization of the Lanczos algorithm. The
proposed improvements can easily be ported to similar methods such as Arnoldi or projection method.

Acknowledgement

We thank J. Schulenburg and B. Schmidt for discussing their Lanczos implementations with us. We also
thank J. Richter for drawing our attention to the encoding of H.Q. Lin, J.S. thanks M. Brüger and R. Schnalle
for discussing encoding problems with him on a train ride.

References

[1] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Nat.
Bur. Stand. 45 (1950) 255–282.

[2] S.R. White, Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B 48 (1993) 10345.
[3] S.R. White, D. Huse, Numerical renormalization-group study of low-lying eigenstates of the antiferromagnetic s = 1 heisenberg

chain, Phys. Rev. B 48 (1993) 3844.
[4] U. Schollwöck, The density-matrix renormalization group, Rev. Mod. Phys. 77 (2005) 259–315.
[5] J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Macroscopic magnetization jumps due to independent magnons

in frustrated quantum spin lattices, Phys. Rev. Lett. 88 (2002) 167207.
[6] J. Schnack, H. Nojiri, P. Kögerler, G.J.T. Cooper, L. Cronin, Magnetic characterization of the frustrated three-leg ladder compound

[(cucl2tachh)3cl]cl2, Phys. Rev. B 70 (2004) 174420.
[7] C. Schröder, H.-J. Schmidt, J. Schnack, M. Luban, Metamagnetic phase transition of the antiferromagnetic heisenberg icosahedron,

Phys. Rev. Lett. 94 (2005) 207203.
[8] J. Jaklič, P. Prelovšek, Finite-temperature properties of doped antiferromagnets, Adv. Phys. 49 (2000) 1–92.
[9] I. Zerec, B. Schmidt, P. Thalmeier, Kondo lattice model studied with the finite temperature lanczos method, Phys. Rev. B 73 (2006)

245108.
[10] E.R. Gagliano, E. Dagotto, A. Moreo, F.C. Alcaraz, Correlation functions of the antiferromagnetic heisenberg model using a

modified lanczos method, Phys. Rev. B 34 (3) (1986) 1677–1682.
[11] H.Q. Lin, Exact diagonalization of quantum-spin models, Phys. Rev. B 42 (1990) 6561–6567.
[12] K. Bärwinkel, H.-J. Schmidt, J. Schnack, Structure and relevant dimension of the Heisenberg model and applications to spin rings, J.

Magn. Magn. Mater. 212 (2000) 240.
[13] R. Geus, S. Rollin, Towards a fast parallel sparse symmetric matrix-vector multiplication, Parallel Comput. 27 (2001) 883–896.
[14] W.W. Chen, B. Poirier, Parallel implementation of efficient preconditioned linear solver for grid-based applications in chemical

physics. ii: QMR linear solver, J. Comput. Phys. 219 (2006) 198–209.


	Efficient implementation of the Lanczos method for magnetic systems
	Introduction
	Heisenberg Hamiltonian and basis encoding
	Basis encoding in {\cal{H}}(M)
	i \Rightarrow | {a}_{1}^{i}, \ldots , {a}_{N}^{i} \rangle 
	| {a}_{1}^{i}, \ldots , {a}_{N}^{i} \rangle \Rightarrow i

	Parallel Lanczos implementation on SMP machines
	Acknowledgement
	References


